431 research outputs found

    Loading of a surface-electrode ion trap from a remote, precooled source

    Full text link
    We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ∼\sim 10610^6 neutral 88^{88}Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of metal deposition on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has the potential for enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and precooled source may enable scalable quantum information processing with trapped ions in large, low-depth surface trap arrays that are not amenable to loading from a hot atomic beam

    Ion traps fabricated in a CMOS foundry

    Get PDF
    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.Comment: 4 pages, 3 figure

    Quantum interface between an electrical circuit and a single atom

    Get PDF
    We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.Comment: Supplemental material available on reques
    • …
    corecore